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Abstract 

In this paper, the urban transit routing problem (UTRP) is addressed for a realistic urban 

transport network. Given the road network infrastructure and the demand, the problem consists 

in designing routes such that the service level as well as the operator cost are optimized. The 

optimality of the service level is measured in terms of average journey time and the route set 

length. A differential evolution (DE) metaheuristic is proposed to solve the UTRP. The 

proposed algorithm produces a solution that improves closer to the lower bound cost of the 

passenger and the operator. In addition, the proposed algorithm produces approximate Pareto 

fronts that enable the transit operator to evaluate the trade-off between operator costs and 

passenger costs. 
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1.  Introduction 

Over the years, public transportation system plays a significant role in daily lives of people in 

many cities of the world. With the rise in population and urbanization of many cities, especially 

in developing and emerging countries, have led to the increase in travel demand. As a result, 

there are significant increase of usage of private vehicles for daily commuting in urban and 

suburban areas. These issues had contributed to the problems including constant traffic 

congestion, excessive and unreliable travel times, stress, greenhouse gas (GHG) emissions and 

noise, more traffic accidents and energy consumption among others. One of the most viable 

solution to handle these problems is to improve the public transport systems and raise their 

attractiveness. This can be achieved through proper design of bus transit networks that takes 

into account the interest of the user and the operator.  In practice, improving the efficiency of 

public transport is an often-stated goal of transportation policy in big cities because only 

efficient public transport can successfully compete with private vehicles and thus help to reduce 

the increasing traffic congestion.  

One of the most important challenges confronting urban transit planners is to achieve suitable 

(viable) transportation systems that can accommodate these huge urban travel demands. With 

regard to the capacities of urban highways in many cities of the world, one can easily conclude 

that the use of private personal vehicles cannot handle the large numbers of urban travel 



demands. Rather, the most viable solution to address the demand in such cities is to utilize 

public transportation systems at different levels of operation. In addition, a number of benefits 

can be secured through the public transport usage including reduction of energy consumption, 

congestion, and carbon emissions among others. However, in many cities of the world, public 

transport has suffered under funding leading to low patronage with many transit users opting 

for private vehicle usage for comfortable and more convenient journey (John, 2014).  

In this paper, the DE metaheuristic, which has been proposed by Storn and Price (1995) to 

solve global optimization problems over continuous space is adapted to solve the UTRP from 

multiobjective perspective. Over the years DE has been successfully applied to a wide range 

of optimization problems (Das and Suganthan, 2011).The key objectives of the problem are 

minimizing the average travel time of the passengers and the total route set length of the 

operator. The proposed algorithm is applied to a realistic transit network, whereby an 

approximate Pareto optimal set is produced that allows the decision maker to select the best 

suited solution.  

2.  Literature Review 

A comprehensive coverage of the previous work on route generation and improvement 

algorithms are provided in the review papers (Guihaire and Hao (2008), Farahani et al. (2013), 

Ibarra-Rojas et al. (2015, Buba and Lee (2016a)). Heuristic and metaheuristic algorithms are 

dominantly used for the optimization of UTRP in the literature. 

Pattnaik et al. (1998) presented a two phase GA in the UTNDP. The design is done in two 

phases. First, a set of candidate routes competing for the optimum solution is generated. 

Second, the optimum set is selected using a GA. Two coding schemes are developed, namely, 

fixed string length coding and variable string length coding. The GA is solved by adopting the 

two coding schemes proposed in the study. Fixed string length predefines a solution route set 

size, and attempts to find that best routes from the candidate route set. The route set size is 

varied iteratively to find the optimum route set. On the other hand, variable string length can 

handle simultaneously selection of the route set size and the set of routes, but this requires 

complex coding. The model is applied to a case study network that is a part of a real network. 

If computation time is not a constraint, the fixed string length model is found to be slightly 

superior to the variable string length model. 

Chakroborty and Wivedi (2002) introduced an optimization algorithm procedure based on the 

principles of GA, which evolves “optimal” or “efficient” transit route sets for a given road 

network and transit demand data from an initial set of routes. The procedure is used to 

determine “optimal” route sets for a real world network used as a benchmark by several authors. 

The results show that the proposed method performs substantially better than the existing 

procedures. 

Ngamchai and Lovell (2003) proposed a model that uses a GA to optimize the bus transit route 

design, incorporaing unique service frequency settings for each route. The proposed GA uses 

seven new genetic operators in integer representation. The model designs the bus routes by the 

route improvement algorithm using genetic operators, and coordination of headways to 

improve the efficiency of the network. The proposed model  proved to be more efficient than 

a binary coded GA. 

Fan and Mumford (2010) devised a model of the UTRP, in which candidate routes are 

evaluated. The objective is to minimize the weighted sum of overall passenger travel time and 

number of transfers. HC and SA are employed to solve the problem using Mandl’s Swiss 



network. The potential for tackling larger problem instances is also explored.  Computational 

results demonstrate that the average solution obtained for SA is slightly better than HC, 

however the results produced by both HC and SA are competitive with other previous 

approaches in the literature. 

Chew et al. (2013) solved a bi-objective UTRP utilizing GA. Passengers’ and operators’ costs 

are optimized, and the quality of route sets are evaluated by a set of parameters. The proposed 

algorithm employs an adding-node procedure to convert an infeasible solution to a feasible 

one. A simple yet effective route crossover and identical-point mutation are proposed to 

perform the genetic operations. The biobjective UTRP is executed by switching the objective 

function after the first objective has converged. The proposed GA is tested on benchmark 

Mandl’s Swiss network and the results outperform the previous best published results from the 

literature in most cases.  

Nikolić and Teodorović (2013) developed a BCO algorithm for the UTRP. The objectives are 

to maximize the number of satisfied passengers, to minimize the total number of transfers, and 

to minimize the total travel time of all served passengers. The methodology includes generating 

the initial solution using a simple greedy algorithm and subsequently employed the 

improvement version of the BCO. The numerical experiments are performed on known 

benchmark problems indicating that the BCO algorithm approach is competitive with other 

approaches in the literature, and it can generate high quality solutions. 

Kechagiopoulos and Beligiannis (2014) designed and presented a PSO for solving the UTRP 

with emphasis on appropriate representation of candidate solutions, and evaluation procedure. 

The methodology is aimed to achieve efficient solution of UTRP by considering the quality of 

service offered to each passenger as well as the operator cost. Results are compared on the 

basis of Mandl’s Swiss network. The obtained results compared with other results published in 

the literature indicate that the proposed soft computing algorithm is competitive with existing 

approaches.  

Nayeem et al. (2014) developed two versions of GA based model (GA with elitism and GA 

with increasing population) with inelastic demand to solve the UTRP by considering the 

following objectives: maximize the number of satisfied passengers, minimize the total number 

of transfers, and minimize the total travel time of all served passengers. GA with elitism is 

found to be competitive with Baaj and Mahmassani (1991), Chackroborty and Dwivedi (2002), 

and Nikolić and Teodorović (2013). In addition, GA with increasing population outperforms 

all previous results. 

Kilić and Gӧk (2014) proposed a novel route generation algorithm based on travel demand for 

public transit network design. The initial route sets are generated based on link usage statistics 

of the transit network. Hill climbing and tabu search algorithms are utilized to test the 

algorithms calibrated on Mandl’s Swiss network and four large networks presented in 

Mumford (2013). The experiments conducted on the larger networks indicate that the results 

obtained are better, interms of the average travel time, direct transfer, and passenger cost values 

as compared to Mumford (2013). 

Most recently, Buba and Lee (2016b) proposed a DE with the aim of minimizing the average 

travel time of all served passengers. Computational experiments performed on the benchmark 

Mandl’s Swiss network show that the proposed DE is competitive to other approaches in the 

literature. 

 



3.  Problem Definition and Formulation 

The urban transit routing problem (UTRP) involves the development of transit routes on an 

existing road network with associated link travel times and predefined demand (stop) points, 

such that the routes optimally satisfy some user-defined objectives, subject to the 

constraints.Generally, passengers would prefer to travel to their destination within the shortest 

time possible, but avoiding the discomfort associated with too many transfers. The passenger 

cost for a route set, ℜ is defined as the average journey time over all passengers, where the 

journey time consists of in-vehicle travel time plus transfer penalty. On the opposite, operator 

costs depend on many factors including the fleet size required to maintain the needed service 

level, the daily distance covered by the vehicles, vehicle operating hours and the cost of 

employing enough drivers. 

The UTRP can be formally defined as in John et al. (2014). Given a road network represented 

as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣1, … 𝑣𝑛} is a set of vertices representing demand points 

(bus stops) and 𝐸 = {𝑒1, … , 𝑒𝑚} a set of edges representing street segments. The weight for 

each edge, 𝑊𝑒 , defines the time it takes to traverse edge 𝑒𝑖, and matrix 𝐷𝑛×𝑛 such that 𝐷𝑣𝑖,𝑣𝑗
 

gives the passenger demand between a pair of vertices 𝑣𝑖 and 𝑣𝑗  are also known. 

Let 𝐺𝑅 = (𝑉𝑅 , 𝐸𝑅) be the subgraph formed by a route  𝑅𝑖, where a route 𝑅𝑖 is defined as a 

simple path (i.e. no loops/repeated vertices) through the graph G . A solution is defined as a set 

of overlapping routes ℜ = {𝑅1, … , 𝑅𝑟} where  𝑟, is the size of routes in route set to be 

prespecified by the service provider due to resource limitation.  The length of 𝑅𝑖 is measured 

by the minimum (𝑚1) and maximum (𝑚2) number of vertices for service quality. Additionally, 

Let 𝜏𝑖,𝑗(ℜ) denote the shortest journey time from any pair of vertices (𝑣𝑖, 𝑣𝑗) using route set ℜ 

calculated using Dijkstra’s algorithm (Dijkstra, 1959), which consist of in-vehicle travel and 

transfer penalty. Therefore, for a given origin-destination (O-D) matrix 𝐷𝑛×𝑛 that represents 

demand among these vertices together with a travel time matrix 𝑇𝑅, where 𝑡𝑟𝑖𝑗 is the in-vehicle 

travel time between vertices 𝑖 and 𝑗. The multiobjective UTRP is to determine a set of transit 

route networks that minimizes the equations (1) and (2) while meeting all the requirements and 

constraints of equations (3) – (6). 

min   𝐶𝑝(ℜ) =
∑ 𝐷𝑖𝑗𝜏𝑖𝑗

𝑛
𝑖,𝑗=1 (ℜ)

∑ 𝐷𝑖,𝑗=1
𝑛
𝑖,𝑗=1

 ,                                                                                                  (1)                                               

min   𝐶𝑜(ℜ) = ∑ ∑ 𝑊𝑒𝑗 ,∀𝑒𝑗∈𝑅𝑖
∀𝑅𝑖∈ℜ                                                                                          (2)                                                                                             

subject to 

            𝑚1 ≤ |𝑉𝑅𝑖
| ≤ 𝑚2 ∀𝑅𝑖 ∈ ℜ,                             (3)                                                                                                                           

 |ℜ| = 𝑟           (4)                                                                                                                                                             

             𝐺𝑅 = (⋃ 𝑉𝑅𝑖

|ℜ|
𝑖=1 , ⋃ 𝐸𝑅𝑖

)
|ℜ|
𝑖=1  is connected                                                                      (5)       

            ⋃ 𝑉𝑅𝑖

|ℜ|
𝑖=1  = V.                                                                                                               (6)                                                                                                                                           

The equation (1) is the passenger cost (𝐶𝑝) for a route set , defined as the average journey 

time over all passengers and equation (2) is the operator cost (𝐶𝑝) defined by total route set 

length. Constraint (3) specifies that each route should contain between 𝑚1 and 𝑚2 vertices. 

Constraint (4) ensures that the solution contains the correct number of routes. Constraint (5) 



ensures that all vertices in 𝑉 are in at least one route in ℜ. Constraint (6) specifies that a path 

exists between all pairs of vertices in GR. If Constraint (6) is satisfied then   

                𝐺𝑅 = (𝑉, ⋃ 𝐸𝑅𝑖

|ℜ|
𝑖=1 ). 

For this problem formulation, the following assumptions are also made: 

1. Each route in the route set is free from repeated nodes. Hence, no cycles or backtracks 

should be allowed in the individual routes. 

2. All nodes must be included in the route set to form a complete route set. 

3. The demand, travel time, and distance matrices are symmetrical along the same route. 

4. The demand level is inelastic throughout the period of the study and passenger choice of 

routes is based on the shortest travel time. 

5. The policy headway is relaxed. It is assumed there are adequate vehicles and capacity, 

and total travel time consist only of in-vehicle travel time plus transfer penalties at five 

minutes for each transfer. 

For the UTRP, this travel time includes in-vehicle time, and transfer penalty that is equal to 5 

minutes per passenger. 

4. DE for Multiobjective UTRP 

In this study, because of the multiobjective nature of the UTRP, both passenger and operator 

costs are considered to solve the UTRP.Inspired by Chew et al. (2013), the implementation of 

the proposed DE algorithm consists of alternating the objective only when the entire population 

of the first objective (Cp) has converged. Therefore, the algorithm will only switch once and 

both of the objectives will start with the same initial population that has been recorded earlier.  

4.1 DE Framework for the Multiobjective UTRP 

The proposed DE for the multiobjective UTRP is carried out analogous to the work of Mumford 

(2013). Each individual is a route set also known as a vector in DE terminology from the given 

road network. The construction heuristic proposed in Mumford (2013) is employed to generate 

the initial population. The improved sub-route reversal (iSRR) repair mechanism is 

incorporated to deal with infeasible route set. The detailed description of the proposed DE is 

provided below. 

STEP 1: Generate an initial population of Np solution vectors based on the construction 

algorithm in Mumford (2013) by incorporating the iSRR repair mechanism to deal 

with the infeasible vectors.  

STEP 2: During the generation G, for a Target vector Xi,G = (x1,i,G, x2,i,G, …, xd,i,G), where i 

= 1, d represents d-components in the d-dimensional space; a random vector is 

selected from the population (except the selected Target vector) and an identical 

point mutation proposed in Ngamchai and Lovell (2003) is applied on the random 

vector to generate a Noisy Random vector, Vi,G . If Vi,G is infeasible, the iSRR is 

invoked to correct the infeasibility. 

STEP 3: To increase the diversity of the Target and Noisy Random vectors, the uniform 

route crossover (Beasley et al., 1993) is introduced. A pair of Trial vectors, Ui,G 

is generated through selecting the vector component values either from the Target 

vector, Xi,G or the Noisy Random vector, Vi,G using a 0/1 crossover mask where 

each sub-route in the Trial vector is constructed by copying the corresponding 



sub-route either from the Target or the Noisy Random vector. IfUi,G is(are) 

infeasible, the iSRR is introduced. 

STEP 4: After the crossover, the objective function values corresponding to the Trial 

vectors, Ui,G are evaluated and compared with that of the Target vector, Xi,G . 

STEP 5: An elitism selection strategy is employed, where the best vector with the lowest 

fitness value between the Target vector, Xi,G and the Trial vectors, Ui,G will be 

selected for the next generation. Repeat STEP 2 – STEP 4 for i= 2,…,Np to 

complete one generation. 

STEP 2 – STEP 5 are repeated until the termination criterion (e.g., maximum generation, 

execution time, etc.) is met. The framework of the proposed DE for solving the UTRP is shown 

in Algorithm 1. 

Algorithm 1: DE for UTRP 

1: Generate Np candidate route set based on heuristic in Mumford (2013) with iSRR repair 

mechanism 

2: for i := 1 to Np 

3: fitness evaluation 

4: end for 
5: for n := 1 to G 

6: for i := 1 to Np 

7: set Target vector = Xi,n 

8: select randomly a vector (except the selected Target vector, Xi,n) in the population 

9: apply identical point mutation to generate a Noisy Random vector,Vi,n (repair if 

infeasible) 

10: apply uniform crossover between Xi,n and Vi,n to generate a pair of Trial vectors, Ui,n 

(repair if infeasible) 

11: fitness evaluation of Ui,n 

12: elitism selection  
13: if Trial vector fitness ≤ Target vector fitness 

14: new_population [i] = Trial vector, Ui,n 

15: else 
16: new_population [i] = Target vector, Xi,n 

17: end for 
18: Np = new_population 

19: end for 
20: return BEST 

 

4.2 Route Set Representation 

Each individual is a route set also known as a vector in DE terminology from the given road 

network. A route set is represented as a single integer vector of lists. For instance, the Mandl’s 

Swiss network (Mandl, 1980) with 15 nodes is denoted by integers from 0 to 14. For example, 

in Figure 1 below, there are four routes in the route set (vector) where the iterinary along the 

first route is either first visit node 0, follow by node 1, then node 3, and finally node 4 or in  

reverse order. This can also be represented using the notation 0 – 1 – 3 - 4 for the first route. A 

sample vector containing 4 routes (separated with “*”) is shown in Figure 1. 

 



 

 

              Figure 1: A sample route set (vector) with 4 routes 

4.3   Initial Population 

The construction heuristic proposed by Mumford (2013) is utilized to generate the initial 

population. The iSRR mechanism is incorporated into the heuristic to correct the infeasible 

route set. In the UTRP, a complete route set is composed of at least two routes generating from 

a list of nodes. Thus, to initialize the population, the nodes are listed in the order in which they 

are visited in integer vector ordered list where each route is separated by an ‘*’ (see Figure 1). 

In the literature, the length of a typical route is commonly measured by the number of nodes it 

contains. One of the important assumptions is that a typical route must contain two or three 

nodes as the minimum number of nodes of a feasible route set and a maximum number of nodes 

to be predefined by the operator. 

 

4.4  Route Set Evaluation 

Each vector or particle is represented using single integer vector ordered list, which constitute 

a route set. A fitness evaluation is used to evaluate the fitness value of a vector or particle 

according to the objective function. The fitness value will determine the quality of solutions 

and enables them to be compared. Recall the components of objective functions (1) and (2). 

Therefore, in fitness evaluation function, each route set will go through Dijkstra’s algorithm 

(Dijkstra, 1959) to calculate the shortest path of the route set for every O-D pairs. The Dijkstra’s 

algorithm has the capability to search for alternative route(s) with same distance which is 

important due to the fact that different path might require different number of transfer(s) in a 

route set of which the transfer penalty will affect the total travel time of the passengers. 

The assumption is that every passenger would want to travel through the shortest path. 

However, in a route set there might be a possibility of having more than one route sharing the 

same shortest distance. Note that the total travel time includes a five-minute penalty waiting 

time each time a passenger makes a transfer. Therefore, to calculate the total travel time for 

each passenger, we assume that the passenger will take into account the transfer waiting times 

when choosing their travel path. Undoubtedly, passenger will always prefer to avoid transfers 

and travel in a shorter time period. Finally, the value of average travel time can be obtained by 

dividing the total travel time with total demand. 

4.5 Input data 

In this section, the proposed algorithm is implemented on a real size Nigeria network, in 

order to compare its effectiveness with the performance of the existing transit network. The 

study network is a small and dense city in Nigeria. The road network is composed of 30 

nodes and 44 bidirectional links (see Figure 2). The “Key” associated with Figure 2 describes 

the bus stop and its corresponding location (abbreviated) within the city. The existing 

network is comprised of 15 routes with many overlapping routes. In the peak hour, the transit 

demand is composed by 422,186 units. The highest node pair travel demand is 4800 units. 

Both travel demand and travel time matrices have a “many-to-many” structure and are 

provided in Tables 1 and 2. 
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The specific parameter values used for the considered real case network include: 

i. Transfer penalty: 5 min 

ii. Minimum number of nodes in each route: 2 

iii. Maximum number of nodes in each route: 15 

 

 

 

 

 

                      Figure 2: Real transit network 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Network Travel Time 

 
 

 

 

Table 2: Network Travel Demand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.6 Algorithm’s Parameters and Evaluation Criteria 

The arguments for algorithm’s parameters are the ones proposed by Fan and Mumford (2010) 

in order to have a fair comparison between all algorithms’ results. The performance or 

effectiveness of the proposed algorithm is evaluated using the same parameters adopted by 

several researchers in the literature (Mandl (1980); Baaj and Mahmassani (1991); Chakroborty 

and Dwivedi (2002); Fan and Mumford (2010); Nikolić and Teodorović (2013); 

Kechagiopoulos and Belligiannis (2014)):  

 do - the percentage of demand satisfied without any transfers, 

 d1 - the percentage of demand satisfied with one transfer, 

 d2 – the percentage of demand satisfied with two transfers, 

 dun – the percentage of demand unsatisfied, 

 ATT – average travel time in minutes per transit user (mpu), 

5. Computational Results 

5.1 Experimental Design 

The algorithms are coded in Python 2.7.6.4 and executed on a 1.60 GHz Intel Core™i5-4200 

CPU with 4.00 GB of RAM under Windows 8.1 environment. A population size of 30 

vectors and 200 generations is used for the computation. The algorithm terminates when no 

improvement is observed over 50 consecutive generations. 

5.2 Experiments with Real Data 

In solving the UTRP, the proposed DE algorithm is applied on the real case network aiming to 

redesign the existing transit routes. We notice that because reference solution (i.e. the solution 

operated by the public transportation system of the city) is not available to compare the result 

obtained by the proposed algorithm. In addition, neither optimum solutions are known, nor any 

previous published results exist. In such a situation, a lower bound on the passenger’s cost and 

the operator cost for the UTRP is computed as proposed in Fan and Mumford (2010). The 

lower bound (shown in brackets in Table 3) on the passenger cost is based on an ideal situation 

for passengers travelling on the transit network; namely, every passenger can travel to their 

destinations by the fastest (or shortest) path without any transfers. We calculate the ideal 

travelling path between each pair of nodes using Dijkstra’s algorithm on the entire transit 

network, provided the number of nodes, travel time and travel demand between each pair are 

known. Thus, “ideal travel paths” between various pairs of nodes may or may not be attainable 

from a given route set.  For the operator cost, the lower bound indicated in bold (Table 3) is 

found by using minimal spanning tree. It is easy to see in the lower bound situation the total 

number of shortest routes can be obtained by the following formulation (Fan 2009): 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑟𝑜𝑢𝑡𝑒𝑠 = 𝑁(𝑁 − 1)/2                                                            (7) 

where N is the total number of nodes in the transit network, at the same time, the Total-

Transfer-Time is 0.  

We conducted experiments using the formulations developed in Section 3 on a real-life network 

in Nigeria to obtain the best route set, having 15 routes (pre-specified by the transit operator). 

Table 3 shows the solutions produced by the proposed algorithm. The best route sets 

constructed by the proposed algorithm are given in Table 4 – 5. The approximate Pareto front 

achieved by the proposed DE for the real case network is shown in Figure 3 so that the decision 

maker can evaluate the best suited solution.  



Unlike the previous work’s in the literature, in which the demand is considered unsatisfied 

provided the passenger makes more than two transfers to reach his/her destination. We extend 

the level of the unsatisfied demand to more than five transfers to demonstrate the ability of the 

proposed algorithm to determine distribution of the transfer demand in a route set. In addition, 

in real-life situation, passengers will normally make more than two transfers and still consider 

such travel demand is satisfied.  

From Table 3, the percentages of demand satisfied with three, four, and five transfers are 

denoted as d3, d4, and d5, respectively. On the passenger, all demand are satisfied with at most 

3 transfers, while 2.31% required more than 5 transfers on operator. It can be observed that if 

the percentage of demand with more than 2 transfers is considered unsatisfied, then on the 

operator it is 33.44% (i.e. 17.67+10.27+3.19+2.31), which is very high. Hence, it is reasonable 

to consider the percentage demand satisfaction to more than two transfers. 

In addition, the results produced by the proposed algorithm for the passenger (Cp = 42.88) is 

relatively close to the lower bound (=38.90). From the operator perspective, the operator cost 

is higher by 22.37%. Furthermore, there is significant reduction operator cost from 3891 to 

569, and this can be attributed to the higher percentage of demand satisfied. It can be concluded 

that the proposed DE algorithm is capable of constructing efficient transit routes. 

 

Table 3: Best Results (15 routes) of Real-Life Network 

Parameters 
Proposed DE algorithm 

Passenger Operator 

do 40.11 17.12 

d1 45.08 26.60 

d2 11.78 22.84 

d3 3.03 17.67 

d4 0.00 10.27 

d5 0.00 3.19 

dun 0.00 2.31 

Cp 42.88(38.90) 60.83 

Co 3891 569 (465) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Best Route Sets generated (for Passenger) by the proposed DE algorithm  
Routes Sequence of Routes 



1 27-26-29-11-10-12-8-7-2-6-5-3-4-20 
2 6-2-0-3-21-24-23-28-29-11-9-8-7-1 
3 7-6-2-8-12-17-16-11-29-26-23-24-27-25-22 
4 19-21-28-18-15-6-7-2-0-3-4-22-25-27-24 
5 13-15-14-5-3-21-25-22-23-26-29-11-16-17-12 
6 7-1-0-3-21-20-4-22-23-28-29-11-9-8-2 
7 16-17-12-8-2-6-15-19-21-20-4-22-25-21 
8 17-12-8-9-11-29-26-23-22-25-21-19-15-6-5 
9 1-0-2-8-7-6-15-14-5-3-4-20-21-25-22 
10 28-21-19-15-14-5-6-2-7-8-12-10-11-29-26 
11 2-8-7-1-0-3-5-14-15-13-12-10-11-16-17 
12 7-2-6-5-14-15-21-28-29-11-9-8-12-13 
13 19-21-20-4-22-25-21-28-29-11-9-8-7-1-0 
14 12-8-7-1-0-2-6-15-18-21-28-23-26-29-11 
15 12-8-9-11-29-28-21-25-22-4-3-5-14-15-13 

 

Table 5.: Best Route Sets generated (for Operator) by the proposed DE algorithm  
Routes Sequence of Routes 

1 21-3-5-14 
2 13-12-10 
3 5-3 
4 18-15-14 
5 10-12-8 
6 2-0-1 
7 20-4-3-5 
8 16-17-12-6-5 
9 9-11-16 
10 29-28-23-26-27-24 
11 2-8-7 
12 24-21-25-22 
13 11-10 
14 19-15-13 
15 2-8 

 

 

Figure 3: Approximate Pareto Fronts for Multiobjective UTRP 
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6. Conclusions and future work 

This paper presents a differential evolution to solve the UTRP for a realistic urban transport 

network. The problem is modelled base on existing urban transport models in the literature.The 

results obtained indicate that the proposed DE give solutions that significantly improves over 

the service level and the operating cost closer to the lower bound costs established on the 

existing transit network.The efficiency of transit network depends on the configuration of 

transit routes and associated service frequency. In the future work, we aim to solve the transit 

network design and frequency setting problem simultaneously for the real data. In 

addition,expanding the components of the objective functions and the constraints of the current 

system to accommodate more complex and realistic transit scenarios will constitute part of our 

future research.We will also examine the optimal modification of some routes within the transit  

network at the expense of redesigning the existing transit network. 
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